Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering.

نویسندگان

  • Zhengjun Xia
  • Satoshi Watanabe
  • Tetsuya Yamada
  • Yasutaka Tsubokura
  • Hiroko Nakashima
  • Hong Zhai
  • Toyoaki Anai
  • Shusei Sato
  • Toshimasa Yamazaki
  • Shixiang Lü
  • Hongyan Wu
  • Satoshi Tabata
  • Kyuya Harada
چکیده

The complex and coordinated regulation of flowering has high ecological and agricultural significance. The maturity locus E1 has a large impact on flowering time in soybean, but the molecular basis for the E1 locus is largely unknown. Through positional cloning, we delimited the E1 locus to a 17.4-kb region containing an intron-free gene (E1). The E1 protein contains a putative bipartite nuclear localization signal and a region distantly related to B3 domain. In the recessive allele, a nonsynonymous substitution occurred in the putative nuclear localization signal, leading to the loss of localization specificity of the E1 protein and earlier flowering. The early-flowering phenotype was consistently observed in three ethylmethanesulfonate-induced mutants and two natural mutations that harbored a premature stop codon or a deletion of the entire E1 gene. E1 expression was significantly suppressed under short-day conditions and showed a bimodal diurnal pattern under long-day conditions, suggesting its response to photoperiod and its dominant effect induced by long day length. When a functional E1 gene was transformed into the early-flowering cultivar Kariyutaka with low E1 expression, transgenic plants carrying exogenous E1 displayed late flowering. Furthermore, the transcript abundance of E1 was negatively correlated with that of GmFT2a and GmFT5a, homologues of FLOWERING LOCUS T that promote flowering. These findings demonstrated the key role of E1 in repressing flowering and delaying maturity in soybean. The molecular identification of the maturity locus E1 will contribute to our understanding of the molecular mechanisms by which a short-day plant regulates flowering time and maturity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal Expression Pattern, Allelic Variation, and Association Analysis Reveal Functional Features of the E1 Gene in Control of Photoperiodic Flowering in Soybean

Although four maturity genes, E1 to E4, in soybean have been successfully cloned, their functional mechanisms and the regulatory network of photoperiodic flowering remain to be elucidated. In this study, we investigated how the diurnal expression pattern of the E1 gene is related to photoperiodic length; and to what extent allelic variation in the B3-like domain of the E1 gene is associated wit...

متن کامل

Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes

Gene regulatory networks involved in flowering time and photoperiodic responses in legumes remain unknown. Although the major maturity gene E1 has been successfully deciphered in soybean, knowledge on the functional conservation of this gene is limited to a certain extent to E1 homologs in legumes. The ectopic expression of Phvul.009G204600 (PvE1L), an E1 homolog from common bean, delayed the o...

متن کامل

Positional Cloning of the Responsible Genes for Maturity Loci E1, E2 and E3 in Soybean

The change from vegetative to reproductive growth is a critical developmental transition in the life of plants. Various external cues, such as photoperiod and temperature, are known to initiate plant flowering under the appropriate seasonal conditions. Endogenous cues include a system of juvenile to adult transition that affects competence to flower. To understand the molecular mechanism of flo...

متن کامل

Allelic Variations at Four Major Maturity E Genes and Transcriptional Abundance of the E1 Gene Are Associated with Flowering Time and Maturity of Soybean Cultivars

The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite ...

متن کامل

GmFT4, a Homolog of FLOWERING LOCUS T, Is Positively Regulated by E1 and Functions as a Flowering Repressor in Soybean

The major maturity gene E1 has the most prominent effect on flowering time and photoperiod sensitivity of soybean, but the pathway mediated by E1 is largely unknown. Here, we found the expression of GmFT4, a homolog of Flowering Locus T, was strongly up-regulated in transgenic soybean overexpressing E1, whereas expression of flowering activators, GmFT2a and GmFT5a, was suppressed. GmFT4 express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 32  شماره 

صفحات  -

تاریخ انتشار 2012